A01 Gradient descent for deep neural network learning
This project aims at making progress in the understanding of convergence properties of (stochastic) gradient descent methods for training deep neural networks. We target several extensions of initial results by the PIs on (fully connected) linear networks. For instance, we will investigate convergence to global minimizers for training structured linear and nonlinear neural networks. An important aspect of the project will be to explore the Riemannian geometry underlying the corresponding gradient flows.
Project Leaders
- Prof. Dr. Holger Rauhut
- Ludwig-Maximilians-Universität München
- more information
- +49 89 2180 4618
- rauhut@math.lmu.de
- homepage
- Prof. Dr. Michael Westdickenberg
- RWTH Aachen University
- more information
- +49 241 80 94569
- mwest@instmath.rwth-aachen.de
- homepage
Postdoctoral Researchers
- Dr. El Mehdi Achour
- RWTH Aachen University
- more information
- +49 241 80 96961
- achour@mathc.rwth-aachen.de
- Dr. Ulrich Terstiege
- RWTH Aachen University
- more information
- +49 241 80 96954
- terstiege@mathc.rwth-aachen.de
Publications
Only Strict Saddles in the Energy Landscape of Predictive Coding Networks?
Preprint pp. 26 Seiten, 2024