B02 Robust sparse low rank approximation of multi-parametric partial differential equations
This project aims at numerical methods for parameter-dependent elliptic PDEs based on polynomial expansions in the parameter domain that retain their efficiency in challenging cases, such as high-contrast coefficients. To this end, we use a new type of low rank approximation for problems with infinitely many parameters and parameter-dependent approximate inverses provided by the new concept of tensor coefficient hierarchical matrices.
Project Leaders
- Prof. Dr. Markus Bachmayr
- RWTH Aachen University
- more information
- +49 241 80 93950
- bachmayr@igpm.rwth-aachen.de
- homepage
- Prof. Dr. Lars Grasedyck
- RWTH Aachen University
- more information
- +49 241 80 97069
- lgr@igpm.rwth-aachen.de
- homepage
Doctoral Researchers
- Tim A. Werthmann
- RWTH Aachen University
- more information
- +49 241 80 93064
- werthmann@igpm.rwth-aachen.de
- homepage
- Huqing Yang
- RWTH Aachen University
- more information
- +49 241 80 97677
- yang@igpm.rwth-aachen.de
Publications
Computing tensor operator exponentials within low‐rank tensor formats with application to the parameter‐dependent multigrid method
Journal Article, Contribution to a conference proceedings pp. 1-6, 2023